The DtxR regulon of Corynebacterium glutamicum.
نویسندگان
چکیده
Previous studies with Corynebacterium diphtheriae and Mycobacterium species revealed that the transcriptional regulator DtxR and its ortholog IdeR play a central role in the control of iron metabolism. In the present work, we used genome-based approaches to determine the DtxR regulon of Corynebacterium glutamicum, a nonpathogenic relative of C. diphtheriae. First, global gene expression of a dtxR deletion mutant was compared with that of the wild type using DNA microarrays. Second, we used a computer-based approach to identify 117 putative DtxR binding sites in the C. glutamicum genome. In the third step, 74 of the corresponding genome regions were amplified by PCR, 51 of which were shifted by the DtxR protein. Finally, we analyzed which of the genes preceded by a functional DtxR binding site showed altered mRNA levels in the transcriptome comparison. Fifty-one genes organized in 27 putative operons displayed an increased mRNA level in the DeltadtxR mutant and thus are presumably repressed by DtxR. The majority of these genes are obviously involved in iron acquisition, three encode transcriptional regulators, e.g., the recently identified repressor of iron proteins RipA, and the others encode proteins of diverse or unknown functions. Thirteen genes showed a decreased mRNA level in the DeltadtxR mutant and thus might be activated by DtxR. This group included the suf operon, whose products are involved in the formation and repair of iron-sulfur clusters, and several genes for transcriptional regulators. Our results clearly establish DtxR as the master regulator of iron-dependent gene expression in C. glutamicum.
منابع مشابه
Computational prediction of DtxR regulon-A Dissection of physiological process controlled by DtxR in Corynebacterium species
We developed a user friendly software tool to identify the potential binding sites of any regulatory protein based on Shannon relative entropy method. Known DtxR binding sites of Corynebacterium diphtheriae (C. diphtheriae) were used to generate a position specific reference profile for DtxR which was used to identify the potential DNA binding sites within the upstream sequences of Corynebacter...
متن کاملPopulation Heterogeneity in Corynebacterium glutamicum ATCC 13032 caused by prophage CGP3.
The genome of Corynebacterium glutamicum type strain ATCC 13032 (accession number BX927147) contains three prophages, CGP1, CGP2, and CGP3. We recently observed that many genes within the CGP3 prophage region have increased mRNA levels in a dtxR deletion mutant that lacks the master regulator of iron homeostasis (J. Wennerhold and M. Bott, J. Bacteriol. 188:2907-2918, 2006). Here, we provide ev...
متن کاملControl of heme homeostasis in Corynebacterium glutamicum by the two-component system HrrSA.
The response regulator HrrA of the HrrSA two-component system (previously named CgtSR11) was recently found to be repressed by the global iron-dependent regulator DtxR in Corynebacterium glutamicum. Here, we provide evidence that HrrA mediates heme-dependent gene regulation in this nonpathogenic soil bacterium. Growth experiments and DNA microarray analysis revealed that C. glutamicum is able t...
متن کاملThe manganese-responsive regulator MntR represses transcription of a predicted ZIP family metal ion transporter in Corynebacterium glutamicum.
Manganese is an important trace element required as an enzyme cofactor and for protection against oxidative stress. In this study, we characterized the DtxR-type transcriptional regulator MntR (cg0741) of Corynebacterium glutamicum ATCC 13032 as a manganese-dependent repressor of the predicted ZIP family metal transporter Cg1623. Comparative transcriptome analysis of a ΔmntR strain and the wild...
متن کامل[Regulation of methionine/cysteine biosynthesis in Corynebacterium glutamicum and related genomes].
Methionine is an essential amino acid and the universal N-terminal amino acid of proteins. The biosynthesis of methionine is extensively studied in various organisms that could be used in biotechnological production of methionine. Transcriptional regulation of the methionine synthesis in the Corynebacterium glutamicum genome is well studied. The McbR protein is a transcriptional regulator of me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 188 8 شماره
صفحات -
تاریخ انتشار 2006